Reversible reactivity by optic nerve astrocytes.
نویسندگان
چکیده
Reactive astrocytes are typically studied in models that cause irreversible mechanical damage to axons, neuronal cell bodies, and glia. Here, we evaluated the response of astrocytes in the optic nerve head to a subtle injury induced by a brief, mild elevation of the intraocular pressure. Astrocytes demonstrated reactive remodeling that peaked at three days, showing hypertrophy, process retraction, and simplification of their shape. This was not accompanied by any significant changes in the gene expression profile. At no time was there discernible damage to the optic axons, as evidenced by electron microscopy and normal anterograde and retrograde transport. Remarkably, the morphological remodeling was reversible. These findings underscore the plastic nature of reactivity. They show that reactivity can resolve fully if the insult is removed, and suggest that reactivity per se is not necessarily deleterious to axons. This reaction may represent very early events in the sequence that eventually leads to glial scarring.
منابع مشابه
Optic nerve astrocyte reactivity protects function in experimental glaucoma and other nerve injuries
Reactive remodeling of optic nerve head astrocytes is consistently observed in glaucoma and other optic nerve injuries. However, it is unknown whether this reactivity is beneficial or harmful for visual function. In this study, we used the Cre recombinase (Cre)-loxP system under regulation of the mouse glial fibrillary acidic protein promoter to knock out the transcription factor signal transdu...
متن کاملAstrocyte Reactivity: A Biomarker for Retinal Ganglion Cell Health in Retinal Neurodegeneration
Retinal ganglion cell (RGC) loss in glaucoma is sectorial in nature and preceded by deficits in axonal transport. Neuroinflammation plays an important role in the pathophysiology of glaucoma in the retina, optic nerve and visual centers of the brain, where it similarly appears to be regulated spatially. In a murine model, we examined the spatial characteristics of astrocyte reactivity (migratio...
متن کاملMyelination transition zone astrocytes are constitutively phagocytic and have synuclein dependent reactivity in glaucoma.
Optic nerve head (ONH) astrocytes have been proposed to play both protective and deleterious roles in glaucoma. We now show that, within the postlaminar ONH myelination transition zone (MTZ), there are astrocytes that normally express Mac-2 (also known as Lgals3 or galectin-3), a gene typically expressed only in phagocytic cells. Surprisingly, even in healthy mice, MTZ and other ONH astrocytes ...
متن کاملNeural Stem Cell-based Intraocular Administration of Pigment Epithelium-derived Factor Promotes Retinal Ganglion Cell Survival and Axon Regeneration after Optic Nerve Crush Injury in Rat: An Experimental Study
Background: Pigment epithelium-derived factor (PEDF) is regarded as a multifunctional protein possessing neurotrophic and neuroprotective properties. PEDF has a very short half-life, and it would require multiple injections to maintain a therapeutically relevant level without a delivery system. However, multiple injections are prone to cause local damage or infection. To overcome this, we chose...
متن کاملGlial reactivity in ciliary neurotrophic factor-deficient mice after optic nerve lesion.
There is evidence that ciliary neurotrophic factor (CNTF), in addition to its neurotrophic activity, positively regulates astrogliosis after CNS injury. CNTF and its receptor, CNTFRalpha, are strongly upregulated in activated astrocytes. Application of CNTF upregulates GFAP expression in cultured astrocytes and induces various aspects of gliosis in the intact brain. Here we examined whether ina...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Glia
دوره 61 8 شماره
صفحات -
تاریخ انتشار 2013